|
中国交通技术咨询网
路桥技术 Teachres

波形钢腹板箱梁独塔斜拉桥主梁施工支架设计

日期: 2016-09-14
浏览次数: 13

    摘要:新密市溱水路大桥主桥采用新颖的独塔无背索斜拉桥桥型,主梁为波形钢腹板混凝土箱梁,设计采用满堂支架法施工。但该桥址处地形和地质条件均比较复杂,给主梁施工带来了困难。文章介绍了主梁施工支架的方案设计、支架体系的设计计算等问题,着重说明地形较复杂的5号墩与6号台间的支架设计及计算过程。 

    1 工程概况 
  溱水路大桥位于新密市溱水路东段,大桥全长227.96m。主桥采用跨径为(30+70+30)m独塔双索面无背索斜拉桥。桥面设双向横坡,横向布置为:6m(人行道)+7m(绿化带)+24m(车行道)+7m(绿化带)+6m(人行道),其加劲梁采用分离式的波形钢腹板PC组合箱梁。 
  波形钢腹板PC组合箱梁是用波形钢腹板代替预应力混凝土箱梁腹板而得到的一种钢与混凝土组合结构箱梁。由于使用钢腹板代替混凝土腹板,使箱梁自重减轻,提高了跨越能力,减小了跨中的挠度。由于波形钢腹板的褶皱效应,导致弯曲时混凝土顶底板承受弯矩,可使预应力有效地施加于混凝土翼缘板上,提高了预应力效率,波形钢腹板承受强大剪力,避免了腹板开裂。 
  主桥立面布置如图1所示。 
  图1 溱水路大桥主桥总布置图(尺寸单位:m) 
  主桥箱梁一般断面如图2所示。除一般断面外,在3、4号墩和6号台顶各设一道大横梁,尺寸为1.5m(纵向)×2.7325m(最大梁高);5号墩处墩、塔、梁固结,该处设三道大横梁进行墩梁连接,每道横梁尺寸均为1.5m(纵向)×3.733m(最大梁高)。此外,纵向每隔6m设一道小横梁,尺寸为0.5m(纵向)×2.733m(最大梁高)。 
  图2 箱梁一般断面图(单位:mm) 
  主桥跨越沟渠,其中3~5号墩之间地势比较平坦,进行一般的地基处理后,采用普通的方法搭设碗扣支架作为施工支架。5号墩与6号台之间地形复杂,坡度很陡,碗扣支架采用通常的搭设方式难以实施,故采用贝雷梁和钢管支架相结合的方式搭设支架,详见后续 
  说明。 
  2 3~5号墩间支架设计方案 
  3~5号墩间碗扣支架设置比较简单,采用横向间距不变(墩顶横隔板处局部加密),纵向间距变化的方法。碗扣支架在纵向分为一般截面、小横梁截面和大横梁(墩顶横梁)截面。一般截面碗扣架纵向间距90cm,普通横隔板截面纵向间距60cm,墩顶横隔板截面纵向间距30cm。此部分支架设置比较简单,过程不赘述,仅给出计算结果。 
  3~5号墩间的小横梁截面,单根钢管承受的最大荷载为24.2kN;4号墩顶大横梁截面,单根钢管承受的最大荷载为13.9kN;5号墩顶大横梁截面,单根钢管承受的最大荷载为18.6kN。 
  钢管规格φ48×3.5。考虑到实际壁厚与设计值的差异,以及使用中的锈蚀等情况,偏于安全地按壁厚2.5mm计算,单根钢管可承受的最大荷载为36kN,大于上述各值,故3~5号墩间支架均安全。 
  另外,钢管作用下地基最大应力为58kPa,远小于处理后地基的承载力200kPa,故地基安全。 
  3 5号墩与6号台间的支架设计 
  3.1 设计概述 
  5号墩与6号台之间地形复杂,坡度很陡,土质为杂填土,承载力较差,采用通常的满堂碗扣支架的施工方式难以实施,故采用贝雷梁和钢管支架相结合的方式搭设支架。具体为:在5号墩承台上设混凝土临时基础,其上设大钢管,钢管顶端设横梁。为保证钢管的稳定性,将钢管与桥墩在竖向每隔一定间距进行联结。在6号台台顶设横向贝雷梁,另外根据地形和主梁的跨度情况,在靠近6号台处设置临时基础,其上也设横向贝雷梁。在5号墩钢管的横梁和横向贝雷梁上设纵向贝雷梁,并于其上设碗扣支架,具体布置如图3所示。 
  图3 5号墩与6号台之间的支架布置示意图(单位:mm) 
  根据图3的支架布置方式,从上而下需对碗扣支架,纵向贝雷梁,5号墩处的横梁及钢管,6号台上的横向贝雷梁,以及混凝土临时基础下的地基承载力进行验算。 
  3.2 纵向贝雷梁计算 
  偏于安全地将纵向贝雷梁按简支梁计算。计算时将混凝土主梁横向分为三个部分,即箱梁之间的主梁,箱体部分和箱梁翼板部分。 
  箱梁间的主梁承受计算荷载:262.5kN/m,纵向贝雷梁跨中弯矩为:11845kNm;箱体部分下承受计算荷载245.8kN/m,贝雷梁跨中弯矩为:11092kNm;箱梁翼板部分承受荷载51.1kN/m,贝雷梁跨中弯矩为:2306kNm。 
  贝雷梁按双排单层(以下简称1片)布置,容许弯矩为1576.4kNm,按上述各弯矩可计算出各部分所需贝雷梁的最小数量。分别为箱梁间主梁和箱体部分各需8片以上,箱梁翼板部分至少需2片。实际操作时,为方便施工,在箱梁间主梁和箱体部分各用13片,每侧翼板下用3片。 
  3.3 横梁计算 
  5号墩侧布置一排钢管柱,钢管采用外径609mm,壁厚16mm的圆钢管。钢管最大中心距2.6m,钢管上纵向铺设4排H型钢作为横梁,H型钢规格为588×300。横梁近似按承受均布荷载的多跨连续梁计算,计算模型及应力结果见图4。 
  图4 横梁计算模型及应力结果(单位:kPa) 
  最大应力仅9.6MPa,即使考虑到横梁可能出现的受力不均匀现象,最大应力也远小于容许值140MPa,安全。最大挠度仅0.1mm,如图5所示,容许挠度2600/400=6.5mm,满足要求。 
  图5 横梁变形结果(单位:mm) 
  各点反力如图6所示,最大值为176.2kN,反力总计2624.8kN,临时基础上的实际总反力为2624.8×4=10499.2kN   图6 横梁反力结果(单位:kN)(仅示一半,另一半对称) 
  3.4 钢管验算 
  根据横梁计算结果,5号墩侧的大钢管承受的最大外荷载为176.2×4=704.8kN,且此钢管与桥墩没有纵向联结,自由长度较大,仅验算此钢管柱。钢管柱采用外径609mm,壁厚16mm的圆钢管,材质Q235钢材。按照轴心受压构件进行验算。回转半径ix=21cm,截面积0.0298m2,此钢管与桥墩纵向无联结,按上下两端均为铰接,计算长度为16.6m。长细比<[λ]=150 
  故每根钢管可承受的荷载为:0.57×0.0298×140×106=2.378×106N=2378kN。临时基础上的钢管柱承担的最大荷载为704.8kN,小于其承载力2378kN,故钢管柱整体稳定性安全。 
  另外验算钢管柱的局部稳定,对于圆管截面,D/t=0.609/0.016=38故其局部稳定满足要求,可以。 
  3.5 钢管下的临时基础地基承载力验算 
  根据前述计算结果,并考虑其它部件重量,则临时基础顶部受力约为11515kN。 
  此处的临时基础尺寸为51×2×1m,自重为51×1×2×26=2652kN,基底受力为11515+2652=14167kN,基底应力为14167/51/2=139kPa,小于处理后的地基容许承载力200kPa,此处地基安全。 
  3.6 靠近6号台处的临时基础地基承载力验算 
  限于篇幅,仅给出此处的计算结果,按处理后的地基承载力200kPa计算,此处地基承载力达到51×1.2×200=12240kN,远大于外荷载3500kN,故此处地基也安全。 
  4 结语 
  上述计算结果显示,支架体系设计合理,可靠。目前,该桥已完成了主梁的施工,施工监控结果表明,施工中整个支架体系受力均满足相关要求,没有出现任何问题,也说明了支架设计的合理性。 
  参考文献 
  [1] 公路桥涵施工技术规范(JTG041-2000)[S].北 
  京:人民交通出版社,2000. 
  [2] 高安荣,张建军,李松,等.鄂东长江大桥超宽箱 
  梁现浇支架设计与施工[J].桥梁建设,2009. 
  [3] 李宏瑾.新密市溱水路大桥波形钢腹板无背索斜拉桥 
  总体设计[J].华北水利水电学院学报,2009,(12). 
  [4] 刘文斌,胡美恒.无背索斜拉桥分段现浇预应力混 
  凝土梁支架施工[J].铁道建筑,2005,(3).

       原文地址:http://www.xzbu.com/8/view-4909510.htm



师资力量 / Teacher
发布时间: 2018 - 09 - 27
交通运输部关于印发《公路养护工程管理办法》的通知各省、自治区、直辖市、新疆生产建设兵团交通运输厅(局、委):   为进一步加强和规范公路养护工程管理,提高养护质量和效益,部对《公路养护工程管理办法》(交公路发〔2001〕327号)进行了修订,现印发给你们,请认真遵照执行。交通运输部 2018年3月2日  (此件公开发布)公路养护工程管理办法第一章 总 则  第一条 为加强和规范公路养护工程管理,提高养护质量与效益,根据《中华人民共和国公路法》《公路安全保护条例》《收费公路管理条例》等法律、行政法规,制定本办法。   第二条 本办法所规定的公路养护工程是指在一段时间内集中实施并按照项目进行管理的公路养护作业,不包括日常养护和公路改扩建工作。   第三条 本办法适用于国道、省道的养护工程管理工作。县道、乡道、村道和专用公路的养护工程管理可参照执行。   第四条 养护工程应当遵循决策科学、管理规范、技术先进、优质高效、绿色安全的原则。   第五条 养护工程管理工作实行统一领导、分级负责。   交通运输部负责全国养护工程管理工作的指导和监督。   地方各级交通运输主管部门或公路管理机构,依据省级人民政府确定的对国道和省道的管理职责,主管本行政区域内的养护工程管理工作。   第六条 公路经营管理单位和从事公路养护作业的单位应当根据交通运输主管部门或公路管理机构提出的养护管理目标,按照标准规范、有关规定及本办法要求组织实施养护工程,并接受其指导和监督。   第七条 各级交通运输主管部门、公路管理机构和公路经营管理单位应当筹措必要的资金用于养护工程,确保公路保持良好技术状况。   非收费公路养护工程资金以财政保障为主,主要通过各级财政资金解决。收费公路养护工程资金主要从车辆通行费中解决。   第八条 养护工程资金使用范围包括公路技术状况检测与评定、养护决策咨询、养护...
发布时间: 2017 - 04 - 27
【摘要】桥梁桥面的施工质量,是保证桥梁安全和平稳的前提条件。桥面铺装层作为桥梁系的一部分,相对于桥梁其他部分它直接承受行车荷载、梁体变形和环境因素的作用。桥面铺装层施工质量的好坏直接影响桥梁使用的耐久性和行车的舒适性、安全性。本文主要就桥梁桥面铺装病害及防治措施进行了分析,以供参考。 中国论文网 http://www.xzbu.com/1/view-6894584.htm  【关键词】桥梁;桥面铺装;病害;控制措施   1、桥面铺装的破坏形式   沥青混凝土桥面铺装与正常路面和水泥混凝土桥面铺装相比,损坏形式有所不同。主要有:①铺装层内部产生较大的剪应力,引起不确定破坏面的剪切变形,或者由于铺装层与桥面板层间结合面粘结力差,抗水平剪切能力较弱,在水平方向上产生相对位移发生剪切破坏,产生推移、拥包等病害;②因温度变化并伴随桥面板或梁结构的大挠度而产生的裂隙,在车辆荷载及渗入的水的作用下产生面层松散和坑槽破坏。   设防水层的水泥混凝土桥桥面沥青混凝土铺装在行车荷载作用下的破坏形式一般为剪切破坏,常表现为拥包和推移现象。剪切破坏有两种情况:一是桥面钢筋混凝土模量远大于沥青混凝土和防水层的模量,加之沥青混凝土层厚度较薄,沥青层内产生较大的剪应力而引起的无确定破坏面的剪切变形;二是防水层与沥青混凝土面层和桥面层间粘结力不足而发生剪切破坏。   2、桥面铺装层病害分析   2.1 结构理论与设计。桥梁的结构理论中对桥面铺装层的计算分析论述几近于零,现行规范中只给定了厚度的推荐值,工程界一直在备等级公路中运用了几十年。桥冲击桥结构的变铺装是一个受力复杂的动力体系,各种形式的主梁及铺装本身的构造均影响其应力的分布。粱设计的箱粱骨架钢筋在实际受力状态下难以像T梁主筋那样发挥应有的作用。所以设计的假设状态与箱梁的实际受力状态不一致。...
发布时间: 2017 - 04 - 27
摘 要:目前,随着我国现代化建设事业的蓬勃发展,桥梁使用年限的增长,以及交通荷载的增加,桥梁检测已成为重中之中,该技术是一个多学科交叉的系统工作,需要各个环节协调配合才能达到一个有效的效果,本文主要介绍了几种无损检测技术的概念、原理和特点,并通过实例进行无损检测的应用说明,为工程人员提供参考信息。中国论文网 http://www.xzbu.com/8/view-3198511.htm  关键词:检测;桥梁;工程    传统的方法是对公路桥梁随机选点,钻孔取样,在室内对所取样本进行分析和处理,从中获取各种有价值的工程参数。这种方法的局限性表现为以下几个方面:  a)因被测点是操作人员随机选择的,所以检测结果很难具有代表性;  b)由于检测点有限,覆盖面密度较小,使某些存在缺陷的不良区段反而被漏检,从而埋下质量隐患;  c)虽然钻孔取样精度高,但其会对路面造成破坏,且修补时费时费力。  无损检测技术作为快速、直观,且能够显示道桥内部状态的检测设备和技术手段,能够弥补传统方法的不足,它在开展道桥无损检测技术研究、建立科学的评价体系、改善路面设计等方面具有重要的意义,也必将带来道桥改造方案的优化和公路桥梁管养水平的提高。  桥梁的无损检测技术(NDT)有较大的发展空间,包括超声检测、红外检测、声发射、自然电位检测、冲击回波检测、X射线检测、光干涉、脉冲雷达、振动试验分析等。在公路桥梁结构中应用NDT,可以提高新建结构质量的安全性;可以提供结构损伤的标志,例如,污染程度,钢筋混凝土桥梁的氯侵蚀程度;可以记录支座处的声发射,反映了裂纹或过大的摩擦力或从垫层支座正在扩展的裂纹。无损检测的这些结果可以作为结构评估的辅助。  在一些情况下,与侵入检测相比,无损测试更快捷,缩短了测试期间的交通管制时间,从而降低了成本。雷达可以快速扫描潜在的结构空洞,雷达在NDT中的使用证明了NDT的速度和便捷...
发布时间: 2017 - 04 - 27
【摘要】交通情况的复杂让交通事故频发,其中超高车辆与桥梁上部结构的碰撞更是频繁发生,不仅对桥梁结构安全性产生较大威胁,同时对交通运行也有一定影响。目前我国关于对超高车辆-桥梁上部结构碰撞的破坏模式与荷载计算的研究不仅存在数量上的不足,在研究深度上也存在一定不足,为此,本文将研究的重点放在超高车辆-桥梁上部结构碰撞的破坏模式与荷载计算方面,了解超高车辆在撞击到桥梁上部结构的破坏模式与荷载,从而对后期的防护有一定指导意义。 中国论文网 http://www.xzbu.com/1/view-7030491.htm  【关键词】超高车辆-桥梁上部结构碰撞;破坏模式;荷载计算   引言   近几年,我国城市立体交通的发展越来越迅速,导致超高车辆碰撞桥梁上部结构的事故也越来越多。2008年在我国成渝高速公路,一辆超高货车强行通过一座正在建的跨线公路桥时将桥梁的主轴直接撞歪,直接导致前两个月的施工作废,金额损伤近百万元,其中还未包括对社会的影响。不仅是在我国,在发达国家这种超高车辆撞击桥梁上部结构的事件也频频发生。可以看出,导致桥梁损坏的主要原因就是受到超高车辆的撞击。对其破坏模式与荷载计算进行分析,从而对优化桥梁上部结构具有一定重要意义。   1.超高车辆-桥梁上部结构碰撞的破坏模式   (1)破坏类型:通过对超高车辆-桥梁上部结构碰撞的事故调查与有限元仿真分析发现,其出现的破坏模式可以分为两种,一种是局部性破坏,另一种则是整体性破坏。局部性破坏是桥梁上部结构受到局部冲剪作用引起的损坏[1]。如果是钢筋混凝土T梁桥,这种局部破坏的程度将会更加明显,整个碰撞区域不仅会出现开裂、崩落,钢筋屈服,甚至整个腹板―面板交界处的混凝土出现纵向开裂。如果是T型钢梁桥,局部破坏也会十分明显,会产生严重的塑性变形。如果是钢箱梁桥,破坏形式表现为钢材屈服。...
Copyright ©2005 - 2016 中国交通技术咨询网
犀牛云提供企业云服务
地址:中国·北京市丰台区马家堡路55号
电话:010-51165102
传真:010-67524077
邮编:330520
关注我们